
PhD Course
March 2025

[source]

Roberto Bruni, Roberta Gori
(University of Pisa)

Lecture #08

Program analysis

https://www.acunetix.com/blog/web-security-zone/dynamic-static-code-analysis-web-security/

Separation SIL

“Separation SIL can yield more succinct
postconditions and provide stronger
guarantees than ISL and can support
effective backward reasoning”

OOPSLA 2025
Revealing Sources of (Memory) Errors via Backward Analysis
FLAVIO ASCARI, University of Pisa, Italy
ROBERTO BRUNI, University of Pisa, Italy
ROBERTA GORI, University of Pisa, Italy
FRANCESCO LOGOZZO,Meta Platforms, USA

Sound over-approximation methods are e�ective for proving the absence of errors, but inevitably produce
false alarms that can hamper programmers. In contrast, under-approximation methods focus on bug detection
and are free from false alarms. In this work, we present two novel proof systems designed to locate the source
of errors via backward under-approximation, namely Su�cient Incorrectness Logic (SIL) and its specialization
for handling memory errors, called Separation SIL. The SIL proof system is minimal, sound and complete
for Lisbon triples, enabling a detailed comparison of triple-based program logics across various dimensions,
including negation, approximation, execution order, and analysis objectives. More importantly, SIL lays the
foundation for our main technical contribution, by distilling the inference rules of Separation SIL, a sound and
(relatively) complete proof system for automated backward reasoning in programs involving pointers and
dynamic memory allocation. The completeness result for Separation SIL relies on a careful crafting of both
the assertion language and the rules for atomic commands.

CCS Concepts: • Theory of computation ! Logic and veri�cation; Proof theory; Hoare logic; Separation
logic; Programming logic.

Additional Key Words and Phrases: Su�cient Incorrectness Logic, Incorrectness Logic, Outcome Logic

ACM Reference Format:
Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. 2025. Revealing Sources of (Memory)
Errors via Backward Analysis. Proc. ACM Program. Lang. 9, OOPSLA1, Article 127 (April 2025), 28 pages.
https://doi.org/10.1145/3720486

1 Introduction
Formal methods aim to automate the improvement of software reliability and security. Notable suc-
cess stories are, e.g., the Astrée static analyzer [Blanchet et al. 2003], the SLAM model checker [Ball
and Rajamani 2001], the certi�ed C compiler CompCert [Leroy 2009], VCC for safety properties
veri�cation [Cohen et al. 2009], and the Frama-C platform for the integration of many C code
analyses [Baudin et al. 2021]. Despite that, e�ective program correctness methods struggle to reach
mainstream adoption, mostly because they exploit over-approximation to handle decidability issues
and false positives are seen as a distraction by expert programmers. Being free from false positives
is possibly the reason why under-approximation approaches for bug-�nding, such as testing and
bounded model checking, are preferred in industrial applications. Incorrectness Logic (IL) [O’Hearn
2020] is a new program logic for bug-�nding: any error state found in the post can be produced by
some input states that satisfy the pre. However, IL triples are not able to characterize precisely the
input states that are responsible for a given error. This is possibly rooted in the forward �avor of the
under-approximation, which follows the ordinary direction of code execution.

Authors’ Contact Information: Flavio Ascari, University of Pisa, Pisa, Italy, �avio.ascari@phd.unipi.it; Roberto Bruni,
University of Pisa, Pisa, Italy, bruni@di.unipi.it; Roberta Gori, University of Pisa, Pisa, Italy, roberta.gori@unipi.it; Francesco
Logozzo, Meta Platforms, Seattle, USA, logozzo@meta.com.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/4-ART127
https://doi.org/10.1145/3720486

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 127. Publication date: April 2025.

SepSIL = SIL + SL

 ⟨⟨P⟩⟩ r ⟨⟨Q⟩⟩
SIL {P} r {Q}

 {P * R} r {Q * R}

SL

SepSIL
 ⟨⟨P⟩⟩ r ⟨⟨Q⟩⟩
 ⟨⟨P * R⟩⟩ r ⟨⟨Q * R⟩⟩

Regular commands

 |

 | +

 |

r ::= e
r1; r2
r1 r2
r⋆

regular
command atomic

command

Kleene
star

skip

 |

 |

 | // read

 | // write

 | alloc()

 |

e ::=
b?
x := a
x := [y]
[x] := y
x :=
𝖿𝗋𝖾𝖾(x)

choice
simplified

Assertion language
 | | | | …

 | | | | …

 |

 |

 |

 |

P ::= 𝗍𝗋𝗎𝖾 𝖿𝖺𝗅𝗌𝖾 a1 < a2 a1 = a2
¬P P1 ∧ P2 ∃x . P
𝖾𝗆𝗉
a1 ↦ a2
P1 * P2
x /↦

assertion

Boolean and
classical

assertions

structural
assertions

track deallocated
locations

Local axioms: write
 {x ↦ _} [x] := y {x ↦ y}

 [x ↦ v] [x] := y [𝗈𝗄 : x ↦ y]

SL

ISL

 ⟨⟨x ↦ _⟩⟩ [x] := y ⟨⟨x ↦ y⟩⟩SepSIL

weakest pre

Local axioms: read

ISL

 {y ↦ v} x := [y] {x = v ∧ y ↦ v}SL

 [y ↦ v] x := [y] [𝗈𝗄 : x = v ∧ y ↦ v]

 ⟨⟨y ↦ v ∧ (v = x′)⟩⟩ x := [y] ⟨⟨y ↦ v ∧ (x = x′)⟩⟩SepSIL

applicable to any
postHoare style

Local axioms: allocation

ISL

 ⟨⟨𝖾𝗆𝗉⟩⟩ x := 𝖺𝗅𝗅𝗈𝖼() ⟨⟨x ↦ _⟩⟩SepSIL

SL {𝖾𝗆𝗉} x := 𝖺𝗅𝗅𝗈𝖼() {x ↦ _}

 [𝖾𝗆𝗉] x := 𝖺𝗅𝗅𝗈𝖼() [𝗈𝗄 : x ↦ _]

Local axioms: dispose

ISL

SL {x ↦ _} 𝖿𝗋𝖾𝖾(x) {𝖾𝗆𝗉}

 [x ↦ v] 𝖿𝗋𝖾𝖾(x) [𝗈𝗄 : x /↦]

 ⟨⟨x ↦ _⟩⟩ 𝖿𝗋𝖾𝖾(x) ⟨⟨x /↦ ⟩⟩SepSIL

using cons can be
strengthened to x ↦ v

Different proofs of a real bug

228 A. Raad et al.

void deref_after_pb(std::vector<int> *v) {
int *x = &v->at(1);
v->push_back(42);
std::cout << *x << "\n"; }

push_back.cpp:7: error: VECTOR_INVALIDATION. accessing memory that was
potentially invalidated by ’std::vector::push_back()’ on line 6.

5. int *x = &(v->at(1));
6. v->push_back(42);
7. > std::cout << *x << "\n"; }

Fig. 1. The C++ use-after-lifetime bug (above); the Pulse error message (below).

needs to grow to accommodate new elements. If the internal array is reallocated
during the v->push back(42) call, a use-after-lifetime bug occurs on the next
line as x points into the previous array. Note how the Pulse error message (at
the bottom of Fig. 1) refers to memory that has been invalidated. As we describe
shortly, this information is tracked in Pulse with an invalidated heap assertion.

For the theory in this paper, we do not want to descend into the details of
C++, vectors, and so forth. Thus, for illustrative purposes, in Fig. 2 we present
an adaptation of such use-after-lifetime bugs in C rather than C++, alongside its
representation in the ISL language used in this paper. In this adaptation, the
array at v is of size 1, and is reallocated in push back non-deterministically to
model its dynamic reallocation when growing. We next demonstrate how we can
use ISL to detect the use-after-lifetime bug in the client procedure in Fig. 2.

ISL Triples. The ISL theory uses under-approximate triples [35] of the form
[presumption] C [ϵ : result], interpreted as: the result assertion describes a subset
of the states that can be reached from the presumption assertion by executing C,
where ϵ denotes an exit condition indicating either normal or exceptional (erro-
neous) termination. The under-approximate triples can be equivalently inter-
preted as: every state in result can be obtained by executing C on a starting
state in presumption. By contrast, given a Hoare triple {pre} C {post}, the post-
condition post describes a superset of states that are reachable from the precon-
dition pre, and may include states unreachable from pre. Hoare logic is about
over-approximation, allowing false positives but not negatives, whereas ISL is
about under-approximation, allowing false negatives but not positives.

Bug Specification of client(v). Using ISL, we can specify the use-after-
lifetime bug in client(v) as follows:

[v !→ a ∗ a !→−] client(v)
[
er(lrx) : ∃a′. v !→ a′ ∗ a′ !→− ∗ a ̸!→

]
(PB-Client)

We make several remarks to illustrate the crucial features of ISL:

• As in standard SL, ∗ denotes the separating conjunction, read “and sepa-
rately”. It implies, e.g., that v, a′ and a are distinct in the result assertion.

• The exit condition er(lrx) denotes an erroneous termination: an error state
is reached at line lrx , where a is dangling (invalidated).

Use-after-lifetime bug

abstracted from real
occurrences at Facebook

from std::vector library, can deallocate and then reallocate v

if v is reallocated, x is invalidated

From C++ to regular commands
Local Reasoning About the Presence of Bugs 5

void push_back(int **v)

{

if (nondet()) {

free(*v);

*v = malloc(sizeof(int));

}

}

void client(v) {

int* x = *v;

push_back(v);

*x = 88; }

push back(v) ,
local z, y in

z := *;
(assume(z 6= 0); lrv : y :=[v];
lf : free(y);
y :=malloc(); [v] := y)

+ (assume(z = 0); skip)

client(v) ,
local x in

x := [v];
push back(v);
lrx : [x] := 88

Fig. 2. The push back example in C (left); and in the ISL language (right).

as a is invalidated after the push back(v) call, the instruction following the call
in client(v) dereferences invalidated memory at lrx, causing an error.

Note that the result assertion in PB-Ok is strictly under-approximate in that
it is smaller (stronger) than the exact “strongest post”. Given the assertion in
the presumption, the strongest post must also consider the else clause of the
conditional, when nondet() returns zero and push back(v) does nothing. That is,
the strongest post is the disjunction of the given result and the presumption. The
ability to go below the strongest post soundly is a hallmark of under-approximate
reasoning: it allows for compromise in an analyzer, where we might choose, e.g.,
to limit the number of paths explored for e�ciency reasons, or to concretize an
assertion partially when symbolic reasoning becomes di�cult [35].

We present proof outlines for PB-Ok and PB-Client in Fig. 3, where we
annotate each step with a proof rule to connect to the ISL theory in §3. For
legibility, uses of the 4.2 rule are omitted as it is used in almost every step,
and the consequence rule Cons is usually omitted when rewriting a formula
to an equivalent one. For the moment, we encourage the reader to attempt to
follow, prior to formalization, by mentally executing the program instructions
on the assertions and asking: does the assertion at each program point under-
approximate the states that can be obtained from the prior state? Note that
each step updates assertions in-place, just as concrete execution does on concrete
memory. For example, lf : free(y) replaces a 7!� with a 67! . In-place reasoning
is a capability that the separating conjunction brings to symbolic execution;
formally, this in-place aspect is achieved in the logic by applying the frame rule.

3 Incorrectness Separation Logic (ISL)

As a first attempt, it is tempting to obtain ISL straightforwardly by composing
the standard semantics of SL [41] and the semantics of incorrectness logic [35].
Interestingly, this simplistic approach does not work. To see this, consider the
following axiom for freeing memory, adapted from the corresponding SL axiom:

[x 7! �] free(x) [ok : emp ^ loc(x)]

C version ISL version SepSIL version

// client, inlining proc call

(// push_back

+

)

x := [v];

y := [v];
𝖿𝗋𝖾𝖾(y);
y := 𝖺𝗅𝗅𝗈𝖼();
[v] := y

𝗌𝗄𝗂𝗉

[x] := 88

228 A. Raad et al.

void deref_after_pb(std::vector<int> *v) {
int *x = &v->at(1);
v->push_back(42);
std::cout << *x << "\n"; }

push_back.cpp:7: error: VECTOR_INVALIDATION. accessing memory that was
potentially invalidated by ’std::vector::push_back()’ on line 6.

5. int *x = &(v->at(1));
6. v->push_back(42);
7. > std::cout << *x << "\n"; }

Fig. 1. The C++ use-after-lifetime bug (above); the Pulse error message (below).

needs to grow to accommodate new elements. If the internal array is reallocated
during the v->push back(42) call, a use-after-lifetime bug occurs on the next
line as x points into the previous array. Note how the Pulse error message (at
the bottom of Fig. 1) refers to memory that has been invalidated. As we describe
shortly, this information is tracked in Pulse with an invalidated heap assertion.

For the theory in this paper, we do not want to descend into the details of
C++, vectors, and so forth. Thus, for illustrative purposes, in Fig. 2 we present
an adaptation of such use-after-lifetime bugs in C rather than C++, alongside its
representation in the ISL language used in this paper. In this adaptation, the
array at v is of size 1, and is reallocated in push back non-deterministically to
model its dynamic reallocation when growing. We next demonstrate how we can
use ISL to detect the use-after-lifetime bug in the client procedure in Fig. 2.

ISL Triples. The ISL theory uses under-approximate triples [35] of the form
[presumption] C [ϵ : result], interpreted as: the result assertion describes a subset
of the states that can be reached from the presumption assertion by executing C,
where ϵ denotes an exit condition indicating either normal or exceptional (erro-
neous) termination. The under-approximate triples can be equivalently inter-
preted as: every state in result can be obtained by executing C on a starting
state in presumption. By contrast, given a Hoare triple {pre} C {post}, the post-
condition post describes a superset of states that are reachable from the precon-
dition pre, and may include states unreachable from pre. Hoare logic is about
over-approximation, allowing false positives but not negatives, whereas ISL is
about under-approximation, allowing false negatives but not positives.

Bug Specification of client(v). Using ISL, we can specify the use-after-
lifetime bug in client(v) as follows:

[v !→ a ∗ a !→−] client(v)
[
er(lrx) : ∃a′. v !→ a′ ∗ a′ !→− ∗ a ̸!→

]
(PB-Client)

We make several remarks to illustrate the crucial features of ISL:

• As in standard SL, ∗ denotes the separating conjunction, read “and sepa-
rately”. It implies, e.g., that v, a′ and a are distinct in the result assertion.

• The exit condition er(lrx) denotes an erroneous termination: an error state
is reached at line lrx , where a is dangling (invalidated).

 ⟨⟨v ↦ a * a ↦ _ * 𝗍𝗋𝗎𝖾⟩⟩ 𝗋𝖼𝗅𝗂𝖾𝗇𝗍 ⟨⟨x /↦ _ * 𝗍𝗋𝗎𝖾⟩⟩

more succint
post

stronger guarantee:
any state in pre can

lead to error

Local Reasoning About the Presence of Bugs 5

void push_back(int **v)

{

if (nondet()) {

free(*v);

*v = malloc(sizeof(int));

}

}

void client(v) {

int* x = *v;

push_back(v);

*x = 88; }

push back(v) ,
local z, y in

z := *;
(assume(z 6= 0); lrv : y :=[v];
lf : free(y);
y :=malloc(); [v] := y)

+ (assume(z = 0); skip)

client(v) ,
local x in

x := [v];
push back(v);
lrx : [x] := 88

Fig. 2. The push back example in C (left); and in the ISL language (right).

as a is invalidated after the push back(v) call, the instruction following the call
in client(v) dereferences invalidated memory at lrx, causing an error.

Note that the result assertion in PB-Ok is strictly under-approximate in that
it is smaller (stronger) than the exact “strongest post”. Given the assertion in
the presumption, the strongest post must also consider the else clause of the
conditional, when nondet() returns zero and push back(v) does nothing. That is,
the strongest post is the disjunction of the given result and the presumption. The
ability to go below the strongest post soundly is a hallmark of under-approximate
reasoning: it allows for compromise in an analyzer, where we might choose, e.g.,
to limit the number of paths explored for e�ciency reasons, or to concretize an
assertion partially when symbolic reasoning becomes di�cult [35].

We present proof outlines for PB-Ok and PB-Client in Fig. 3, where we
annotate each step with a proof rule to connect to the ISL theory in §3. For
legibility, uses of the 4.2 rule are omitted as it is used in almost every step,
and the consequence rule Cons is usually omitted when rewriting a formula
to an equivalent one. For the moment, we encourage the reader to attempt to
follow, prior to formalization, by mentally executing the program instructions
on the assertions and asking: does the assertion at each program point under-
approximate the states that can be obtained from the prior state? Note that
each step updates assertions in-place, just as concrete execution does on concrete
memory. For example, lf : free(y) replaces a 7!� with a 67! . In-place reasoning
is a capability that the separating conjunction brings to symbolic execution;
formally, this in-place aspect is achieved in the logic by applying the frame rule.

3 Incorrectness Separation Logic (ISL)

As a first attempt, it is tempting to obtain ISL straightforwardly by composing
the standard semantics of SL [41] and the semantics of incorrectness logic [35].
Interestingly, this simplistic approach does not work. To see this, consider the
following axiom for freeing memory, adapted from the corresponding SL axiom:

[x 7! �] free(x) [ok : emp ^ loc(x)]

ISL derivation
6 A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard

[v 7! a ⇤ a 7!�]

local y, z in

z :=*; //Havoc

[ok :z=1 ⇤ v 7! a ⇤ a 7!�]

(assume(z 6= 0); //Assume

[ok :z=1 ⇤ z 6=0 ⇤ v 7! a ⇤ a 7!�]

lrv : y := [v]; //Load

[ok :z=1 ⇤ y=a ⇤ v 7! a ⇤ a 7!�]

lf : free(y); //Free

[ok :z=1 ⇤ y=a ⇤ v 7! a ⇤ a 67!]

y := malloc(); //Alloc1,Choice

[ok :z=1 ⇤ v 7! a ⇤ a 67! ⇤ y 7!�]
[v] := y; //Store

[ok :z=1 ⇤ v 7! y ⇤ a 67! ⇤ y 7!�]
) + (. . .) //Choice

[ok :z=1 ⇤ v 7! y ⇤ a 67! ⇤ y 7!�]
//Local

[ok : 9a0. v 7! a0 ⇤ a0 7!� ⇤ a 67!]

[v 7! a ⇤ a 7!�]

local x in

x := [v]; //Load

[ok :x=a ⇤ v 7! a ⇤ a 7!�]

push back(v); //PB-Ok

[ok :9a0.x=a ⇤ v 7!a0⇤ a0 7!�⇤a 67!]//Cons

[ok :9a0.x=a ⇤ v 7!a0⇤ a0 7!�⇤x 67!]

lrx : [x] := 88; //StoreEr

[er(lrx) : 9a0. x=a ⇤ v 7! a0 ⇤ a0 7!� ⇤ x 67!]

//Local

[er(lrx) : 9a0. v 7! a0 ⇤ a0 7!� ⇤ a 67!]

Fig. 3. The proof sketches of PB-Ok (left) and PB-Client (right).

Here, emp describes the empty heap and loc(x) states that x is an addressable
location; e.g., x cannot be null. Note that this ISL triple is valid in that any
state satisfying the result assertion can be obtained from one satisfying the
presumption assertion, and thus we do have a true under-approximate triple.

However, in SL one can arbitrarily extend the state using the frame rule:

` [p] C [✏ :q] mod(C) \ fv(r) = ;
` [p ⇤ r] C [✏ :q ⇤ r]

(4.2)

Intuitively, the state described by the frame assertion r lies outside the footprint
of C and thus remains unchanged when executing C. However, if we do this with
the free(x) axiom above, choosing x 7! � as our frame, we run into a problem:

[x 7! � ⇤ x 7! �] free(x) [ok : (emp ^ loc(x)) ⇤ x 7! �]

Here, the presumption is inconsistent but the result is not, and thus there is no
way to get back to the presumption from the result; i.e., the triple is invalid. In
over-approximate reasoning this does not cause a problem since an inconsistent
precondition renders an over-approximate triple vacuously valid. By contrast, an
inconsistent presumption does not validate under-approximate reasoning.

Our way out of this conundrum is to consider a modified model in which
the knowledge that a location was previously freed is a resource-oriented fact,
using negative heap assertions. The negative heap assertion x 67! conveys more
knowledge than the loc(x) assertion. Specifically, x 67! conveys: 1) the knowledge
that x is an addressable location; 2) the knowledge that x has been deallocated;

SepSIL derivation

 // Load + Frame

 (// push_back: Choice

 // Load + Frame

 // Free + Frame

 // Alloc + Frame

 // Write + Frame

 +

 // Skip + Frame

)

⟨⟨v ↦ a * a ↦ _ * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨v ↦ a * a ↦ _ * (a = a ∨ a /↦) * 𝗍𝗋𝗎𝖾⟩⟩
x := [v];

⟨⟨v ↦ a * a ↦ _ * (x = a ∨ x /↦) * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨(v ↦ a * a ↦ _ * (x = a ∨ x /↦) * 𝗍𝗋𝗎𝖾) ∨ (x /↦ * 𝗍𝗋𝗎𝖾)⟩⟩

⟨⟨v ↦ a * a ↦ _ * (x = a ∨ x /↦) * 𝗍𝗋𝗎𝖾⟩⟩
y := [v];

⟨⟨v ↦ a * y ↦ _ * (x = y ∨ x /↦) * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨v ↦ _ * y ↦ _ * (x = y ∨ x /↦) * 𝗍𝗋𝗎𝖾⟩⟩
𝖿𝗋𝖾𝖾(y);

⟨⟨v ↦ _ * y /↦ * (x = y ∨ x /↦) * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨x /↦ * v ↦ _ * 𝖾𝗆𝗉 * 𝗍𝗋𝗎𝖾⟩⟩
y := 𝖺𝗅𝗅𝗈𝖼();

⟨⟨x /↦ * v ↦ _ * y ↦ _ * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨x /↦ * v ↦ _ * 𝗍𝗋𝗎𝖾⟩⟩
[v] := y

⟨⟨x /↦ * v ↦ y * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨x /↦ * 𝗍𝗋𝗎𝖾⟩⟩

⟨⟨x /↦ * 𝗍𝗋𝗎𝖾⟩⟩ 𝗌𝗄𝗂𝗉 ⟨⟨x /↦ * 𝗍𝗋𝗎𝖾⟩⟩

⟨⟨x /↦ * 𝗍𝗋𝗎𝖾⟩⟩
[x] := 88

Correctness and completeness

Relational semantics

[[𝗌𝗄𝗂𝗉]] ≜ {(σ, σ)}
[[b?]] ≜ {(σ, σ) ∣ σ = ⟨s, h⟩ ∧ s ⊧ b}
[[x := a]] ≜ {(⟨s, h⟩, ⟨s[x ↦ [[a]]s], h⟩)}

[[x := [y]]] ≜ {(⟨s, h⟩, ⟨s[x ↦ v], h⟩) ∣ v = h(s(y)) ∈ ℤ}

[[[x] := y]] ≜ {(⟨s, h⟩, ⟨s, h[s(x) ↦ s(y)]⟩) ∣ h(s(x)) ∈ ℤ}

[[x := 𝖺𝗅𝗅𝗈𝖼()]] ≜ {(⟨s, h⟩, ⟨s[x ↦ n], h[n ↦ v]⟩) ∣ v ∈ ℤ ∧ (n ∉ 𝖽𝗈𝗆(h) ∨ h(n) = ⊥)}

[[𝖿𝗋𝖾𝖾(x)]] ≜ {(⟨s, h⟩, ⟨s, h[s(x) ↦ ⊥]⟩) ∣ h(s(x)) ∈ ℤ}

Actual rules of SepSILRevealing Sources of (Memory) Errors via Backward Analysis 127:17

hhempii skip hhempii hhskipii hh@ [0/G]ii x := a hh@ii hhassignii

hhempii x := alloc() hhG 7! Eii hhalloc1ii hh@ ^ 1ii b? hh@ii hhassumeii

hhV 67! ii x := alloc() hhG = V ^ G 7! Eii hhalloc2ii hhG 7! �ii free(x) hhG 67! ii hhfreeii

G 8 fv(0)
hh~ 7! 0 ⇤ @ [0/G]ii x := [y] hh~ 7! 0 ⇤ @ii hhloadii hhG 7! �ii [x] := y hhG 7! ~ii hhstoreii

hh?ii r hh@ii fv(C) \mod(r) = ;
hh? ⇤ Cii r hh@ ⇤ Cii hhframeii hh?ii r hh@ii G 8 fv(r)

hh9G .?ii r hh9G .@ii hhexistsii

?) ?0 hh?0ii r hh@0ii @0) @

hh?ii r hh@ii hhconsii hh?ii r1 hhCii hhCii r2 hh@ii
hh?ii r1; r2 hh@ii

hhseqii

hh?1ii r1 hh@ii hh?2ii r2 hh@ii
hh?1 _ ?2ii r1 Å r2 hh@ii

hhchoiceii 8= � 0 hh@(= + 1)ii r hh@(=)ii
hh9=.@(=)ii r⇤ hh@(0)ii hhiterii

hhfalseii r hh@ii hhemptyii hh?1ii r hh@1ii hh?2ii r hh@2ii
hh?1 _ ?2ii r hh@1 _ @2ii

hhdisjii

hh@ii r⇤ hh@ii hhiter0ii hh?ii r⇤; r hh@ii
hh?ii r⇤ hh@ii hhunrollii

Fig. 5. Proof rules for Separation SIL. The first group replaces SIL rule hhatomii, the second includes rules
peculiar of SL, the third includes rule from SIL, both its core set and auxiliary ones.

R����� 5.1 (L������� ���������). Di�erently from SIL, the post of Separation SIL rules for atomic
commands is not a generic assertion @. We formulate rules this way inspired by the “locality principle”
of separation logics: each axiom only focuses on the relevant part of the heap manipulated by the
atomic command. Larger heaps are dealt with using a suitable “frame” rule. We will show in Section 5.5
how it is always possible to algorithmically rewrite any assertion @ in a shape to which these rules can
be applied, thus allowing for (automated) backward reasoning in Separation SIL.

Rule hhskipii does not specify anything about its pre and postconditions, because whatever is
true before and after the skip can be added with hhframeii. Rule hhassignii is Hoare’s backward
assignment rule [Hoare 1969]. While also Floyd’s forward axiom [Floyd 1967] is sound for SIL
(see Section 4.2), we opt for Hoare’s rule because it �ts better with the backward analysis of SIL.
Rule hhassumeii conjoins, in the precondition, the assertion b to the postcondition, because only
states satisfying the Boolean guard can reach the post. Rules hhalloc1ii and hhalloc2ii allocate a new
memory location for G : in the former the location is new, in the latter it reuses the previously
deallocated location V . Rule hhfreeii requires G to be allocated before freeing it. Rule hhloadii is similar
to rule hhassignii, with the addition of the (disjoint) ~ 7! 0 to make sure that ~ is allocated. Rule
hhstoreii requires that G is allocated, and updates the value it points to.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 127. Publication date: April 2025.

Correctness

Th. [correctness]

If then

Proof. By induction on the derivation.

⟨⟨P⟩⟩ r ⟨⟨Q⟩⟩ P ⊆ [[r]]Q

(Relative) completeness

Th. [completeness]

Any valid triple can be derived

Proof. See full paper.

⟨⟨P⟩⟩ r ⟨⟨Q⟩⟩

Questions

Question 1
Which SepSIL triples are valid ?

 ⟨⟨𝖾𝗆𝗉⟩⟩ 𝖿𝗋𝖾𝖾(x) ⟨⟨x /↦ ⟩⟩

 ⟨⟨x /↦ ⟩⟩ 𝖿𝗋𝖾𝖾(x) ⟨⟨x /↦ ⟩⟩

 ⟨⟨𝖿𝖺𝗅𝗌𝖾⟩⟩ 𝖿𝗋𝖾𝖾(x) ⟨⟨𝖾𝗆𝗉⟩⟩

 ⟨⟨x ↦ _⟩⟩ 𝖿𝗋𝖾𝖾(x) ⟨⟨𝖾𝗆𝗉⟩⟩

Question 2
Transform the following C-like code in the syntax of SepSIL

while () do { }i := 0 ; q := * p ; q ≠ 𝗇𝗂𝗅 q := * q ; i := i + 1

 (?) ; ;

(?)

i := 0 ;
q := [p] ;
(q ≠ 𝗇𝗂𝗅 q := [q] ; i := i + 1)⋆

q = 𝗇𝗂𝗅

Prove the SepSIL triple where⟨⟨p ↦ 𝗇𝗂𝗅 * 𝗍𝗋𝗎𝖾⟩⟩ c ⟨⟨i = 0⟩⟩
while () do { }c ≜ i := 0 ; q := * p ; q ≠ 𝗇𝗂𝗅 q := * q ; i := i + 1

Exam question

